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ABSTRACT

The formulation of a fully compressible nonhydrostatic atmospheric model called the Model

for Prediction Across Scales - Atmosphere (MPAS-A) is described. The solver is discretized

using centroidal Voronoi meshes and a C-grid staggering of the prognostic variables, and

incorporates a split-explicit time-integration technique used in many existing nonhydrostatic

meso- and cloud-scale models. MPAS can be applied on the globe, over limited areas on

the globe, and on Cartesian planes. The Voronoi meshes are unstructured grids that permit

variable horizontal resolution; these meshes allow for applications beyond uniform-resolution

NWP and climate prediction, in particular allowing embedded high-resolution regions for

regional NWP and regional climate applications. The rationale for aspects of this formulation

are discussed, and results from tests for nonhydrostatic flows on Cartesian planes and for

large-scale flow on the sphere are presented. The results indicate that the solver is as

accurate as existing nonhydrostatic solvers for nonhydrostatic scale flows, and has accuracy

comparable to existing global models using icosahedral (hexagonal) meshes for large-scale

flows in idealized tests. Preliminary full-physics forecast results indicate that the solver

formulation is robust and that the variable-resolution mesh solutions are well resolved and

exhibit no obvious problems in the mesh-transition zones.
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1. Introduction

Computational capabilities that are expected to be generally available in the near future

will enable global atmospheric model applications permitting explicitly-resolved nonhydro-

static motions that will require the solution of the nonhydrostatic equations. The applica-

tions will likely include both variable resolution mesh modeling with limited areas allowing

nonhydrostatic motions, such as the exploratory efforts in global nonhydrostatic variable-

resolution modeling of Yeh et al. (2002), Satoh et al. (2008), and Tomita (2008), and global

high-resolution uniform-mesh modeling where nonhydrostatic scales are permitted anywhere

on the globe, which has been explored by Satoh et al. (2008). Development efforts for at-

mospheric models capable of these applications are in their early stages and face significant

challenges in discretizing the nonhydrostatic fluid-flow equations on the sphere (Williamson

2007), in allowing selective refinement, and in achieving efficient scaling on massively parallel

computer architectures.

We have constructed a global fully compressible nonhydrostatic model using finite-volume

numerics discretized on centroidal Voronoi (nominally hexagonal) meshes using C-grid stag-

gering of the prognostic variables based on the work of Thuburn et al. (2009) and Ringler

et al. (2010). This model is called the Model for Prediction Across Scales (MPAS), and its

development is a collaborative project being led by the National Center for Atmospheric

Research (NCAR) and Los Alamos National Laboratory (LANL). NCAR is responsible for

developing the MPAS atmospheric component, LANL is responsible for the ocean compo-

nent, and the shared software infrastructure is being developed jointly.

Quasi-uniform centroidal Voronoi meshes are similar to the icosahedral (hexagonal) meshes

such as that used in the nonhydrostatic icosahedral atmospheric model (NICAM, Satoh

et al. 2008), and they provide nearly-uniform resolution over the globe. In contrast, global

atmospheric models have typically employed latitude-longitude grids for their discretization

(Williamson 2007). Latitude-longitude mesh implementations of finite difference, finite-
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volume, and spherical transform methods do not scale (map) well on the latest generations

of supercomputers that rely on large numbers of distributed-memory processing elements.

Finite difference and finite-volume methods used on latitude-longitude meshes need polar

filters and other extensions to the numerical schemes due to the convergence of grid lines

at the poles. Spherical transform methods, while not requiring polar filtering, do not scale

optimally with increasing resolution, and the semi-Lagrangian transport with which they

are often paired needs special attention in the polar regions in addition to polar filtering. As

with the icosahedral meshes, Voronoi meshes do not require polar filtering, and paralleliza-

tion based on standard horizontal (2D) domain decomposition is possible and appears to

allow good weak scaling performance on massively parallel architectures in our early tests.

The centroidal Voronoi meshes also allow for local refinement, and the variable-resolution

horizontal mesh takes advantage of the unstructured-mesh capabilities of our nonhydrostatic

solver. The variable-resolution meshes are generated such that there is a gradual change

in mesh density from the coarse to the high resolution regions (Ringler et al. 2008), and

allow much more flexible mesh refinement capabilities than approaches using a remapping

of a structured mesh, for example the clustering of latitude and longitude gridlines used

in Yeh et al. (2002) or the remapping of the global icosahedral mesh employed in Tomita

(2008). The smooth mesh transitions we use stand in contrast to the abrupt mesh transitions

used in traditional 2-way nested models (e.g. Skamarock et al. 2008) or in mesh refinement

achieved directly through cell division (e.g. Walko and Avissar 2008). We believe the smooth

mesh transition will ameliorate many of the difficulties associated with traditional nesting

approaches, as indicated by the results from Ringler et al. (2011) using the shallow water

equations. Testing the variable-mesh capabilities of the MPAS nonhydrostatic solver is not

a focus of this paper; we expect to report test results for this important capability in future

publications.

The approach we are using to solve the nonhydrostatic equations can be considered an ex-

3



tension of existing techniques used in nonhydrostatic models, such as the Advanced Research

WRF (ARW) model (Skamarock and Klemp 2008), to the horizontal Voronoi mesh, and this

includes the use of C-grid staggering. Using established techniques allows us to directly

compare our Voronoi mesh results with those from state-of-the-art cloud/mesoscale models

and to establish the accuracy and efficiency of the solver at the smallest resolved scales.

These techniques with C-grid staggering had not previously been incorporated in Voronoi

or icosahedral-hexagonal mesh models because of numerical problems recently resolved by

Thuburn et al. (2009) and Ringler et al. (2010).

In this paper we focus on describing the nonhydrostatic fluid-flow solver and demonstrate

its accuracy in applications on the sphere and in nonhydrostatic test cases on Cartesian do-

mains. We begin in section 2 by presenting the equations and the finite-volume split-explicit

discretization used in the unstructured mesh solver, and we discuss some aspects of the

variable unstructured mesh and considerations involving the discretization. In section 3 we

present nonhydrostatic test results on a Cartesian plane and compare them with results from

existing nonhydrostatic solvers. Tests indicate the solver is producing solutions comparable

to existing cloud models. Test simulation results for large-scale flow on the sphere are pre-

sented in section 4, and include both idealized tests and example full-physics forecasts on

uniform and variable-resolution meshes. These test results indicate that the solver is per-

forming as well or better than existing Voronoi and icosahedral mesh models based on the

results presented here and on shallow water tests and theoretical considerations presented

in the previous work of Ringler et al. (2011). We conclude in section 5 with a summary.
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2. Solver formulation

a. Continuous equations

We cast the governing equations in terms of a new height-based terrain-following vertical

coordinate ζ following Klemp (2011). In this formulation, illustrated for simplicity on a

Cartesian grid, the height of the coordinate surface is defined by

z = ζ + A(ζ) hs(x, y, ζ), (1)

where ζ represents the nominal heights (ignoring terrain) of the coordinate surfaces, A(ζ)

defines the relative weighting between the terrain-following coordinate and the pure height

coordinate with 0 ≤ A ≤ 1 − ζ/zt, zt is the height of the model top, and the array hs

is specified to produce increased smoothing of the terrain influence with height with the

requirement that hs(x, y, 0) = h(x, y). For A(ζ) = 1 − ζ/zt and hs(x, y, ζ) = h(x, y) (the

terrain height) we recover the traditional terrain-following height coordinate, and for A(ζ) =

0 we recover a pure height coordinate. As described in Klemp (2011), A(ζ) and hs can

be chosen to control the amount and scale of terrain influence on the vertical coordinate.

The metric terms associated with the vertical coordinate transformation are represented by

∇ζ = (ζx, ζy, ζz), with ζH = (ζx, ζy) and zH = −ζH/ζz. We use the traditional terrain-

following height coordinate option in all the test results presented in this paper.

We cast our prognostic equations using the flux variables

(U, V,Ω,Θm, Qj) = ρ̃d · (u, v, ω, θm, qj) (2)

to provide mass and scalar conservation, where ρd is the density of dry air, ρ̃d = ρd/ζz, qj

represents the mixing ratio of the respective water species, and

θm = θ[1 + (Rv/Rd)qv] (3)

is a modified moist potential temperature with qv representing the water vapor mixing ratio.

Ω = V · ∇ζ is the component of the mass flux normal to the coordinates surfaces in the
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transformed coordinate. The compressible nonhydrostatic equations are written in flux form

using these variables, with the horizontal momentum equations expressed in vector-invariant

form to help achieve desired conservation properties. The full equation set can be expressed

as

∂VH

∂t
= −

ρd

ρm

[

∇ζ

( p

ζz

)

−
∂zHp

∂ζ

]

− η k × VH

− vH∇ζ · V −
∂ΩvH

∂ζ
− ρd∇ζK − eW cosαr −

uW

re

+ FVH
, (4)

∂W

∂t
= −

ρd

ρm

[

∂p

∂ζ
+ gρ̃m

]

−
(

∇ · vW
)

ζ

+
uU + vV

re
+ e (U cosαr − V sinαr) + FW , (5)

∂Θm

∂t
= −

(

∇ · V θm

)

ζ
+ FΘm

, (6)

∂ρ̃d

∂t
= −

(

∇ · V
)

ζ
, (7)

∂Qj

∂t
= −

(

∇ · V qj
)

ζ
+ FQj

. (8)

Pressure is obtained diagnostically from the equation of state,

p = p0

(

RdζzΘm

p0

)γ

, (9)

with γ = cp/cv. Here, ρm is the density of moist air,

ρm

ρd
= 1 + qv + qc + qr + . . . , (10)

where qv, qc, qr are mixing ratios of vapor, cloud water, rain water, etc. In (4), η = k · ∇×

vH + f is the absolute vertical vorticity, and K = |vH |
2/2 is the horizontal kinetic energy.

In the curvature and Coriolis terms in (4) and (5), f = 2Ωe sinψ, e = 2Ωe cosψ, ψ is the

latitude, Ωe is the angular rotation rate of the earth, re is the earth radius, and αr is the

rotation angle between the line normal to the horizontal velocity and the meridians. The

terms FVH
, FW , FΘm

and FQj
represent sources and sinks from physics, sub-grid models and
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filters. Following the notation of Dutton (1986) we define (∇ ·V b)ζ = ∇ζ ·(VHb)+∂(Ωb)/∂ζ

for any scalar b, where ∇ζ refers to the divergence operator along a constant ζ surface and

VH = (U, V ).

b. Temporal discretization

The fully compressible nonhydrostatic equations are solved using the time-split integra-

tion technique described in Klemp et al. (2007) for the height-coordinate equations. As

in Klemp et al., we recast the governing equations (4) – (8) in terms of thermodynamic

variables (ρ′d, Θ′

m, p
′) that are perturbations from a hydrostatically-balanced reference state

that is only a function of the geometric height z. In this way we reduce the truncation error

associated with the horizontal pressure gradient terms and the roundoff error in right-hand-

side terms in the vertical momentum equation. We use the third-order Runge-Kutta scheme

and explicit time-splitting as described in Wicker and Skamarock (2002). The time splitting

technique integrates gravity waves and horizontally propagating acoustic waves on smaller

explicit substeps within the three-step Runge-Kutta time integration. Vertically-propagating

acoustic waves are integrated implicitly. Thus the Runge-Kutta time step is limited by the

maximum advective velocity, and the acoustic time step is limited by the horizontal acoustic

phase speed. The use of the vector-invariant form of the horizontal momentum equation (4)

does not complicate this solution procedure, but note that we cast this equation in flux form

to facilitate the acoustic solve. This gives rise to the additional term vH∇ζ · V that does

not appear in non-flux-form equations that are usually used in this context, e.g. in Ringler

et al. (2010). Again following Klemp et al. (2007), we cast the acoustic-step equations in

terms of perturbation variables from the values at timestep t for integration from t to t+∆t.
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c. Spatial discretization

In the MPAS atmospheric solver, the continuous equations are spatially discretized on

an unstructured C-grid centroidal Voronoi mesh following Thuburn et al. (2009) and Ringler

et al. (2010). Quasi-uniform meshes as well as variable resolution meshes can be generated

for the sphere, for regional domains on the sphere, and for Cartesian planes using techniques

described in Ringler et al. (2008).

A horizontal C-grid Voronoi mesh is depicted in Fig. 1. The horizontal momentum

normal to the cell edge (u in Fig. 1) is prognosed at the cell edges. The coupled potential

temperature Θm, density ρ̃d and moisture Qj are prognosed at the cell centers where they

represent cell-averaged values in the finite-volume formulation. The vertical momentum

is prognosed on the vertical cell faces located half a grid level above and below the cell

center, consistent with a 3D C-grid discretization. All other quantities are diagnosed from

the prognostic variables, e.g. pressure (9). The tangential component of the horizontal

momentum needed at the cell edges, k × VH in (4), is diagnosed following Thuburn et al.

(2009). The horizontal momentum components (U, V ) needed at the horizontal cell center in

the vertical momentum equation (5) are computed from a radial basis function reconstruction

using the prognosed horizontal velocities at the cell edges. The absolute vertical vorticity

η is diagnosed following Ringler et al. (2010). Using the tangential velocity reconstruction

described by Thuburn et al. (2009), this horizontal discretization for the C grid does not

suffer from the problems of the non-stationary geostrophic mode (Ničković et al. 2002). The

horizontal discretization conserves mass to machine roundoff.

We have two options for the kinetic energy K defined at cell centers and used in (4). The

approach described in Ringler et al. (2010) defines the kinetic energy in the cell, denoted

here as Kc, as a sum over the edges of the cell:

Kc = A−1

c

∑

e

u2

e le de/4, (11)
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where ue is the edge normal velocity, Ac is the area of the cell, le is the edge length and de is

the distance between cell centers sharing edge e (see Fig. 1). The second option, developed

by Gassmann (2011, personal communication), begins with a definition of the kinetic energy

at cell vertices that we denote as Kv:

Kv = A−1

v

3
∑

e=1

u2

e le de/4, (12)

where the three edges are those edges that share vertex v, and Av is the area of the triangle

containing the vertex (the triangle depicted by the dashed lines in Fig. 1). Using Kv we

construct a second cell-centered value of KE, denoted Kcv
, by computing an area-weighted

sum of kinetic energies Kv at the vertices of a given cell:

Kcv
= A−1

c

∑

v

KvAcv
, (13)

where Acv
is the shaded area associated with a vertex of a given cell as depicted in Fig. 1.

The new value of the cell-centered kinetic energy used in (4) is given by the weighted sum

of Kc (11) and Kcv
(13):

K = αKc + (1 − α)Kcv
, (14)

where α is a weighting coefficient; α = 1 recovers the Ringler et al. (2010) formulation (11)

and α = 3/8 is used in the Gassmann formulation. The Ringler et al. (2010) formulation

(11) guarantees energy conservation to the time-truncation error within their fully nonlinear

shallow water (SW) equations solver. The formulation from Gassmann (α 6= 0) will not

conserve energy in the SW solver, but we have found that it removes a computational insta-

bility we have encountered in large-scale simulations of baroclinic waves. Further discussion

of these kinetic energy formulations and simulation results are given in section 4.

The transport scheme used for the horizontal flux divergence calculations in (5), (6) and

(8) on the irregular Voronoi mesh is described in Skamarock and Gassmann (2011). It uses

nominally third and fourth order approximations to the scalar gradient to construct the

scalar values on the cell edges in the conservative flux-divergence calculation. The mass flux
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divergence in (7) is approximated by averaging the cell averaged values of ρ̃d to the cell face

from the two cells sharing the face (see Thuburn et al. 2009). We use the mass flux that

is time-averaged over the acoustic steps for scalar transport, thus maintaining consistency

between the scalar transport and the continuity equation. The vertical flux divergence terms

in (4), (5), (6) and (8) are calculated using the third and fourth-order schemes as described

in Wicker and Skamarock (2002) but using the reduced dissipation in the third-order scheme

as described in Skamarock and Gassmann (2011).

As explained in Klemp et al. (2003), it is important to maintain consistency between

the transport operator and the metric terms associated with the terrain transformation.

In MPAS this requires that the diagnosis of the transformed vertical velocity Ω be consis-

tent with the advection operator used in the thermodynamic equation (6). To satisfy this

requirement, we formulate the transformed vertical velocity for cell i as

Ωi =V · ∇ζ = VH · ζH +Wζz

= ζz [W − VH · ∇H(z − zi)]

= ζz [W − ∇H · VH(z − zi)] , (15)

where zi is the coordinate-surface height at cell i for which Ωi is being computed. We

apply the same Skamarock and Gassmann (2011) scheme to the right-hand-side of (15),

thus satisfying the consistency requirement. The expensive part of the Skamarock and

Gassmann scheme, evaluating (z − zi) at the cell faces, can be computed and stored before

integration begins; thus, there is little additional cost in implementing the Klemp et al.

(2003) consistency requirement.

Horizontal filters using the Laplacian are evaluated using a standard finite-volume dis-

cretization on the Voronoi mesh. The discrete version of the Laplacian ∇2ψ = ∇·∇ψ of the
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scalar ψ at cell i is expressed as

∇ · ∇ψ = A−1

i

ne
∑

e

(ψe − ψi)le/de +O(∆2), (16)

where ne are the number of edges making up cell i, le is the length of edge e on cell i, ψe is

the scalar value in cell j sharing edge e with cell i, and de is the distance between the centers

of cells i and j. A fourth-order hyperdiffusion is enabled by taking the discrete Laplacian of

the discrete Laplacian (16).

The Laplacian of the momentum u is evaluated using the vector identity

∇2ui =
∂

∂xi

∇ζ · v −
∂η

∂xj
, (17)

where ui is the edge-normal velocity defined on cell edge i, η is the relative vertical vorticity

and ∇ζ · v is the horizontal divergence. The first term on the right-hand-side of (17) is

the difference between the horizontal divergence of the two cells sharing edge i, and the

second term is the difference of the vorticities defined at the vertices on either side of edge

i. The evaluation of the vertical vorticity at the vertices and the divergence for each cell is

described in Ringler et al. (2010). As with scalar diffusion, a fourth-order hyperdiffusion for

momentum can be evaluated by applying this discrete operator twice.

The horizontal filtering formulation of Smagorinsky (1963) uses the second-order Lapla-

cians (16) and (17) along with an eddy viscosity Kh defined on the Cartesian plane using

the Cartesian velocities (u, v):

Kh = c2s l
2
[

(ux − vy)
2 + (uy + vx)

2
]1/2

. (18)

We have implemented this approach by evaluating Kh in (18) at cell centers on the sphere.

The eddy viscosities are averaged to the cell faces such that the diffusion operator is in

conservation form:

∇ ·Kh∇ψ.

The evaluation of the eddy viscosity Kh is accomplished by projecting the velocities onto

a tangent plane, integrating the squared terms involving the velocities in (18) over the cell
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and applying Stokes theorem to transform the cell integrals to discrete line integrals around

the cell edge. The evaluation is inexpensive because the prognostic normal and diagnostic

tangential velocities exist, and the time-independent coefficients for the line integrals are

pre-computed and stored before the time integration begins.

d. Discretization considerations

Compared with other Voronoi and icosahedral mesh models using finite-volume or finite-

difference formulations, there are a number of new aspects in the MPAS solver formulation

that benefit global multiscale (hydrostatic- and nonhydrostatic-scale) atmospheric simula-

tions.

The first advance in MPAS is the formulation for the C-grid staggering of the prognostic

variables. Ničković et al. (2002) examined hexagonal C-grid formulations for the shallow

water equations on an f -plane. The tangential velocity needs to be reconstructed from the

prognosed normal velocities on the cell faces of the C-grid in order to evaluate the Coriolis

term, and Ničković et al. showed that the stationary geostrophic mode in the linearized

shallow water (SW) equations will be nonstationary using the most obvious reconstruction

of the tangential velocity. The nonstationary geostrophic mode produces distortion in ro-

tational modes that renders the scheme useless for most applications. Thuburn (2008) and

Thuburn et al. (2009) developed a method to reconstruct the tangential velocity such that

the geostrophic mode remains stationary for the linear SW equations. Ringler et al. (2010)

extended this formulation to the nonlinear SW equations such that it conserves potential

vorticity and potential enstrophy, conserves energy to the time truncation error, and allows

for dissipation of potential enstrophy following Sadourny and Basdevant (1985). These ad-

vances are based on the constraint that the horizontal mass divergence on the triangular

mesh (the dashed triangular cell in Fig.1, the dual of the hexagonal mesh), that is computed

using the reconstructed tangential velocities, be equal to the area-weighted sum of the diver-
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gences in the hexagons underlying the triangular cell. These conservation properties can be

considered a generalization of the conservative rectangular mesh discretizations of Sadourny

(1975) and Arakawa and Lamb (1981).

Our use of C-grid staggering is guided by theory and by practical experience. Mesoscale

and cloud-scale motions are dominated by horizontally divergent gravity-wave motions, and

C-grid staggering provides twice the resolution of divergent modes compared to the unstag-

gered (A) grid; it does not require any averaging of the velocities or pressures in the pressure

gradient and divergence terms as is required on the A, B, D and E-grid staggerings. Pres-

sure and velocity averaging lead to stationary grid-scale modes (often referred to as parasitic

modes) that must be filtered, and the parasitic modes associated with the divergence and

pressure gradient terms will require a higher level of filtering on these meshes. Our experi-

ence is that the level of filtering needed on these other meshes is considerably higher than

that needed to provide sinks for the downscale energy and enstrophy cascades in our full

nonlinear simulations using the C-grid staggering. In practice, we find that solvers not using

C-grid staggering need finer meshes to produce similarly resolved features (such as clouds).

Our experience also indicates that higher-order differencing of the mass divergence and pres-

sure gradient terms does not appreciably change the behavior for the non C-grid meshes;

parasitic modes remain, increased filtering is still needed, and higher mesh densities are still

needed to produce comparably-resolved solutions. Generally speaking, all grid staggerings

can be made to work with some level of filtering, and the choices affect scheme efficiency

(accuracy versus cost). We have found that the C-grid discretization results in the highest

efficiency.

Randall’s (1994) analysis of geostrophic adjustment indicates that the C-grid staggering

is not optimal for large-scale flows. Our intended applications for MPAS are cell spacings of

order 100 km and less. Our tests indicate that MPAS produces solutions similar in accuracy

to other finite-volume and finite difference models for large scale flows [based on results
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in Ringler et al. (2010) for shallow-water tests, and our results for the Jablonowski and

Williamson (2006) baroclinic wave tests]. We have not identified any problems arising from

the C-grid discretization or with the computational Rossby modes addressed in Thuburn

et al. (2009). For higher-resolution applications (to resolve mesoscale circulations), the

rotational modes will be well resolved regardless of the specific numerics. In this regime,

numerical accuracy will be most strongly influenced by treatment of the gravity-wave modes.

The second advance incorporated into MPAS is the use of higher-order operators within

the advection scheme. Atmospheric models using unstructured, irregular meshes often em-

ploy simple low-order operators within the advection algorithms. For example, the flux

divergence term in the scalar conservation equation requires that mass flux be evaluated at

the cell edge, and a common second-order formulation uses the average of the scalar val-

ues in the two cells sharing that edge. However, these schemes do not produce solutions

on hexagonal meshes that are as accurate as those produced in state-of-the-art rectangular

mesh cloud and mesoscale models. Within MPAS we have implemented a transport scheme,

described in Skamarock and Gassmann (2011), that uses a least-squares fit polynomial to

evaluate higher-order scalar derivatives used in the 3rd and 4th order transport schemes

[similar to that employed in the ARW model (Skamarock and Klemp 2008)]. A significant

increase in accuracy is demonstrated with the Skamarock and Gassmann (2011) scheme over

that obtained using other second-order formulations.

Finally, unstructured mesh solvers such as MPAS make use of indirect addressing when

building the horizontal operators during a timestep. We keep vertical columns contiguous in

memory in our Fortran implementations, and we find that our solvers have computational

efficiencies similar to our rectangular (structured) grid solvers (e.g. ARW). MacDonald et al.

(2010) have examined the question of efficiency in 3D atmospheric solvers and find that,

on cache-based computer architectures, unstructured mesh solvers having vertical columns

contiguous in memory are as efficient as their structured-mesh counterparts.
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3. Test cases: Nonhydrostatic flows on Cartesian planes

It is very costly and difficult to assess the nonhydrostatic response of global atmospheric

solvers because very high resolutions are needed to resolve nonhydrostatic scales, particularly

for convection, where cell spacings of a few kilometers or less are needed. The MPAS

unstructured Voronoi mesh and solver can be used on Cartesian planes in addition to the

sphere, and we have performed extensive tests of the solver for nonhydrostatic scale motions

on Cartesian planes using both 2D (x, z) and 3D test cases, including mountain waves, 2D

and 3D squall lines and 3D supercell thunderstorms. For the mountain wave cases we have

exact linear and nonlinear solutions, and these tests have helped us verify the correctness

of our coding. We present results from the Schär et al. (2002) test case that has been used

to examine the numerical treatment of terrain and some aspects of the consistency of the

discretization. A strongly nonlinear 2D density current test from Straka et al. (1993) is

presented to demonstrate the nonlinear response of the numerics. In our experience, we

have found that deep moist convection provides the most challenging tests of nonhydrostatic

solver robustness (stability) and accuracy due to the significant latent heating occurring

near the grid scale. Thus, we also present results from 3D idealized supercell thunderstorm

simulations to demonstrate the robustness of the MPAS nonhydrostatic solver.

a. 2D Schär test case

Schär et al. (2002) proposed a test case, using flow over terrain containing small-scale

structure, that has been used to uncover some problems within terrain-following coordinate

models. In the Schär et al. paper, smoothing the coordinate surfaces helped remove the

spurious motions generated using particular model formulations. Klemp et al. (2003) showed

that the spurious motions examined by Schär et al. were associated with an inconsistency

between the transport terms and the diagnosis of the vertical velocity in terrain-following
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coordinate model formulations.

The test case uses a terrain height

h(x) = H exp

(

−
x2

a2

)

cos2
πx

λ

where H = 250 m, λ = 4000 m, and a = 5000 m. A constant mean-state buoyancy

frequency N = 0.01 s−1 is prescribed along with a constant horizontal environmental wind

U = 10 ms−1. Schär et al (2002) and Klemp et al. (2003) use horizontal mesh spacings of

500 m and vertical mesh spacing of nominally 300 m in their tests, and we use these same

mesh spacings. The horizontal mesh in the 2D (x, z) configuration for MPAS is constructed

using 2 rows of perfect hexagons in x along with periodic boundary conditions in y.

Figure 2 depicts the vertical velocity in the steady-state solutions for three test con-

figurations; the first (Fig. 2a) uses a fully second-order model configuration, the second

(Fig. 2b) uses the 4th-order transport scheme for the potential temperature (see Skamarock

and Gassmann 2011) but only a second-order evaluation of the transformed vertical velocity

using (15), and the third (Fig. 2c) uses the 4th-order scheme for both transport and the

transformed vertical velocity diagnosis. The results can be compared with those in Klemp

et al. (2003). The solution depicted in Fig. 2c, using the 4th-order scheme for both transport

and the transformed vertical velocity diagnosis, best reproduces the analytic solution, and

the second-order solution depicted in Fig. 2a reproduces the analytic solution fairly well.

In contrast, the discretization using the 4th order transport and 2nd order vertical velocity

diagnosis in Fig. 2b has a very large error in the vertical velocity field above the mountain.

This error is the same as that found in Schär et al. and Klemp et al.. Our model formulation

follows Klemp et al. by employing a consistent diagnosis of the vertical velocity using (15)

to remove the source of the error.
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b. 2D density current

The density current test case is described in Straka et al. (1993). This 2D simulation of a

highly nonlinear density current uses a fixed physical viscosity of 75 m2 s−1, hence converged

solutions can be computed. The domain extends from -25.6 km to 25.6 km in x and from

0 to 6.4 km in z, and the boundary conditions are periodic in x and upper solid and lower

free-slip surfaces in z. There is no flow at the initial time and the atmosphere is neutrally

stratified. The density current is produced by specifying an initial thermal perturbation of

the form

∆T =















0◦C if R ≥ 1,

−15.0◦C (cos(πR) + 1)/2 if R < 1,

where R2 = [(x−xc)/xr]
2 + [(z− zc)/zr]

2, xc = 0 km, xr = 4 km, zc = 3 km, and zr = 2 km.

This cold bubble descends to the surface and spreads out to produce left and right moving

density currents.

For these tests, MPAS is configured to use the third-order upwind scheme from Skamarock

and Gassmann (2011) for potential temperature transport with an upwinding coefficient of

0.25. Figure 3 depicts the simulation results at 900 seconds and these results can be directly

compared with those from Straka et al (1993). While the 25 meter mesh solution is essentially

converged, the 100 meter mesh solution is beginning to exhibit noticeable differences from

the converged solution (none of the published model results are visibly converged on the

100 meter mesh). For example, the maximum temperature in the second eddy behind the

leading edge is colder, and there is some evidence of overshoots in the temperatures closest

to the surface. These errors are significantly larger on the 200 meter mesh where many

features can no longer be resolved. Using a standard second-order advection formulation

(the bottom panel of Fig. 3), the solution error increases dramatically due to the less-

accurate transport scheme. Overall, the MPAS solutions compare well with other published

cloud-model solutions for this test, including the model solutions presented in Straka et al
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(1993), and more recently those for the ARPS model (Xue et al. 2000) and the WRF model

(Skamarock and Klemp 2008).

c. Supercell simulation

We have performed 3D supercell simulations using the MPAS model and a rectangular

mesh model using a doubly-periodic (x, y) domain. The horizontally-homogenous environ-

ment is initialized using the sounding from Weisman and Klemp (1982) and a unidirectional-

shear hodograph with a horizontal wind speed of zero at the surface, increasing linearly to

25 m/s at 5 km and constant above 5 km. A positive thermal perturbation in θ is used

to initiate convection as described in Weisman and Klemp. Mirror-image right- and left-

moving supercells are produced in these simulations, and a depiction of the storms from the

rectangular mesh and MPAS solvers is given in Fig.4, which shows the vertical velocity and

rainwater fields at z = 5 km and the surface cold pool. The storms are very similar on both

meshes, and perfect symmetry is maintained in both solvers. The solutions compare well

with those published in the literature, such as those in Weisman and Klemp.

The maximum vertical velocity as a function of time for these two simulations is given

in Fig. 5. The maximum velocities are very similar in the two simulations, especially for the

first half hour in the simulation. They are sensitive to the configuration of the models, and we

are using the same discretizations and filtering (2nd-order dissipation with a constant eddy

viscosity ν = 500 ms−1). The similarity of these two solutions to each other and those in

the cloud-modeling literature leads us to conclude that MPAS produces convective solutions

of similar accuracy, quality and robustness as our state-of-the-art cloud models such as the

Advanced Research WRF model (Skamarock and Klemp 2008). We have also found that the

MPAS has similar computational efficiency compared to rectangular-mesh cloud models such

as the Advanced Research WRF; the cost of the additional horizontal momentum equation

in MPAS (there are nominally three horizontal velocities on the Voronoi mesh for each
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thermodynamic point (cell) compared to two horizontal velocities for rectangular meshes)

is offset by the ability to take longer timesteps; experience, and a linear stability analysis,

indicate we can take a timestep 1.25 times greater on the Voronoi mesh compared to the

timestep allowed on a rectangular mesh.

4. Test cases: Large-scale flow on the sphere

A standard test for 3D solvers on the sphere is the Jablonowski and Williamson (2006)

baroclinic wave test. We have simulated the baroclinic wave as described in the reference

using horizontal mesh resolutions from approximately 480 km cell-center spacing (2562-cell

mesh) to approximately 30 km cell spacing (655362-cell mesh). The initial state consists

of identical zonally symmetric unstable jets in both the northern and southern hemispheres

and represents an unstable but steady-state solution. Tests include simulations without any

initial perturbation in which case the steady solution should be maintained, and simula-

tions of a baroclinic wave train that is triggered with a small perturbation in the northern

hemisphere zonal wind.

To initialize the model state for these tests, we begin by computing the initial state on

a 2D (y, z) mesh on the sphere where the horizontal dimension y extends from the south

pole to the north pole and the vertical mesh spacing is that used for the full 3D mesh. We

iteratively solve for the hydrostatically-balanced thermodynamic state in each column in a

manner similar to that described in Jablonowski and Williamson. We set the zonal velocities

on the 2D mesh to the discrete geostrophic velocity ug because we have found that there

can be small but significant geostrophic imbalances using the analytic zonal velocities. We

initialize the horizontal velocities by determining the zonal mass fluxes across each 3D cell

edge from the 2D solution. We compute the thermodynamic state on the full 3D mesh using

the same iterative procedure used for the 2D mesh. The initial state computed for the jet
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using this procedure is depicted in Fig. 6; it is in approximate geostrophic balance and is

nondivergent.

In this section we also present an example of a full-physics NWP forecasts on a uni-

form mesh and a variable resolution mesh. We present these forecasts to demonstrate the

robustness of the solver at large scales with full physics and earth’s terrain; evaluation of

the full-physics MPAS forecast capabilities on uniform and nonuniform meshes will be the

subject of future reports.

a. Dry baroclinic wave simulations

Figure 7 depicts the surface pressure, 850 hPa vorticity and temperature for the perturbed

jet at day 9 usung the 60 km (163842-cell) mesh and can be directly compared with the

solutions from Jablonowski and Williamson in their Figs. 7 and 8. MPAS used a timestep

of 450 s in the Runge-Kutta solver and a 75 s timestep for the acoustic mode integration. A

2nd-order Smagorinsky filtering was used with a filter coefficient cs = 0.125 and a constant

length scale l = 6.0 × 104 m. Within the acoustic substeps of the timesplit scheme we used

a 3D divergence damping coefficient of βd = 0.1 (see Klemp et al. 2007, equation (19)) and

a vertically implicit off-centering parameter βs = 0.1 (see Klemp et al. 2007, equation (17)).

We use the 3rd-order transport scheme described in Skamarock and Gassmann (2011) for the

thermodynamic equation (6). The 60 km MPAS mesh is of similar mesh resolution as those

used in the Jablonowski and Williamson study where most of the results are presented for

the nominally 1/2 degree meshes (∼ 55 km). The MPAS results in Fig. 7 are qualitatively

very similar to those reported in Jablonowski and Williamson, both with regards to the

structure in the fields and the maximum and minimum surface pressures and vorticities. We

are using a timestep that is significantly larger than those used by the fully-explicit models

in the Jablonowski and Williamson study; the larger MPAS timestep is made possible by the

split-explicit time integration scheme that handles the gravity waves on the acoustic substep.

20



We have also used this test case to examine model behavior using different advection schemes

and the results are reported in Skamarock and Gassmann (2011). The test results reported

in Skamarock and Gassmann show that the phase errors are significantly reduced using

the third-order scheme compared with the second-order scheme for potential temperature

transport.

We have also conducted the Jablonowski and Williamson test case without the wind field

perturbation to test the ability of the solver to maintain the initial steady-state balanced

jet, and the results are given in Fig. 8 for the 240 km (10242-cell) mesh. These results can

be directly compared with the results depicted in Fig. 8 in Lauritzen et al. (2010), where

six different dynamical cores were tested. Results for three different mesh orientations are

plotted in Fig. 8, one with pentagons of the icosahedral-based mesh set at the poles, and two

with these pentagons rotated latitudinally 45 and 90 degrees from the poles. The tests with

no mesh rotation maintain the steady state best (smallest perturbations in surface pressure

at day 9) because the pentagons on the icosahedral-based mesh are not located in the jet

region. The 45 and 90 degree mesh rotations place the pentagons within the jet, and the

perturbations in the surface pressure field are larger because the truncation errors in these

model formulations are largest around the pentagons and excite the unstable modes of the

jet more quickly. Comparing these MPAS simulations to those presented in Lauritzen et al.

(2010), the perturbations in the zonal flow in the MPAS surface pressure field are somewhat

smaller in magnitude than those of the hydrostatic CSU model results [using both the sigma

and hybrid coordinates, see Fig. 8 in (Lauritzen et al. 2010)] and much lower in amplitude

compared to the ICON model results [which uses a triangular primal mesh, also plotted

in Fig. 8 in Lauritzen et al.]. Additionally, the surface pressure fields exhibit symmetry

about the equator in the MPAS results whereas there is no apparent symmetry in the CSU

and ICON model results, suggesting either asymmetries in the CSU and ICON meshes or

initialization, or errors in the solvers.
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Based on the comparisons of these test results with published results from other models,

we find that the nonhydrostatic MPAS model produces results with accuracy equal to or

greater than other hydrostatic icosahedral finite-volume formulations on the sphere.

b. Unfiltered baroclinic wave simulations

The baroclinic wave simulations presented in the previous section used a spatial filter

with characteristics similar to those employed by the models tested in Jablonowski and

Williamson (2006). Frontal collapse occurs between days 9 and 10 in the simulations, and

solutions degenerate into grid-scale noise in the frontal regions shortly thereafter if no spatial

filtering is used. The nonhydrostatic MPAS model will, however, run stably through day 10

in the simulation without spatial filtering. Figure 9 shows the solution for vorticity at day

8 on model level 5 (approximately 850 hPa) for two simulations where all spatial filtering is

disabled in the MPAS model. One simulation uses the kinetic energy formulation (14) with

α = 1, corresponding to Ringler et al. (2010), and the second simulation uses this formulation

with α = 3/8. The noise evident in the simulation using α = 1 causes the unfiltered model

to be unstable; the model aborts shortly after day 9. Any of the spatial filters available

in MPAS (the second and fourth order filters using constant eddy viscosities and hyper-

viscosities, and the Smagorinsky-based filter) are sufficient to remove this instability. It is

preferable to remove this instability in the basic solver formulation, and the kinetic energy

evaluation (14) with α = 3/8 appears to accomplish this for this test. We do not have

a theoretical analysis explaining this instability. While it appears to share some of the

characteristics of the instability described by Hollingsworth et al. (1983), the formulation

(14) does not lead to a cancellation of terms in the nonlinear momentum transport described

by Hollingsworth et al.. Furthermore, we do not have a theoretical justification for specifying

α = 3/8. We have found that the instability is not apparent for 0.20 ≤ α ≤ 0.45 in (14).
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c. Full-physics global forecast examples

We have performed full-physics multi-day forecasts on both quasi-uniform and variable-

resolution meshes to assess the robustness of the solver. We employ the following model

physics taken directly from the Weather Research and Forecast (WRF) model physics suite

[see Skamarock and Klemp (2008), Skamarock et al. (2008)]: WSM6 microphysics, Kain-

Fritsch convective parameterization, YSU PBL parameterization, Monin-Obukhov surface

layer parameterization, the NOAH land-surface model, and the RRTMG long-wave and

short-wave radiation parameterizations. Descriptions and references for these parameter-

izations can be found in the Advanced Research WRF Technical Note (Skamarock et al.

2008). We use the same time step on the entire mesh for the variable-resolution mesh simu-

lations, and this time step is chosen so that it is stable for the fine-mesh region. We use the

Smagorinsky filter in these forecasts with the coefficient cs = 0.125. The length scale in the

Smagorinsky filter is scaled with the local grid spacing.

We have computed 5-day forecasts valid on 28 October 2010 using a uniform-resolution

mesh with a mean cell-center spacing of 60 km and using a non-uniform mesh with a mean

cell-center spacing varying between approximately 162 km in the coarse mesh region and

21 km in the fine mesh region. Both meshes use the same number of cells (163842). The

variable-resolution mesh is the same as that depicted in Fig. 10 except the cell mesh spacing

is 1/4 of that in the figure; it is the 163842-cell x8 mesh used in Ringler et al. (2011). We

initialized the forecasts using the National Centers for Environmental Prediction (NCEP)

Climate System Forecast Reanalysis (CSFR) (Saha et al. 2010), and the CSFR reanalysis

at day 5 is also presented in Fig 11. We chose this time period because of the very strong

surface low pressure region that formed over the north-central US during this forecast and

the strong north-Pacific jet preceding it that extended through the western mesh-transition

region in the variable-resolution forecast. The time steps are 225 s for the uniform nominally

60 km mesh and 90 s for the variable-resolution 162-21 km mesh.
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The two forecasts and the analysis shown in Fig. 11 are similar; the mid-latitude baro-

clinic waves evident in the height field have similar locations and amplitudes with some

differences in structure, and the general precipitation patterns are similar. The forecasts are

generally warmer than the analysis at 500 hPa in the tropics and show more precipitation

at the higher thresholds in the tropics. The higher tropical precipitation amounts, in ad-

dition to the lighter grid-scale precipitation amounts in the tropics, are consistent with our

experiences using the Kain-Fritsch convective parameterization in the WRF model at these

resolutions.

The fine mesh region of the non-uniform mesh forecast has some finer-scale structure

compared to the uniform resolution forecast, although this is difficult to discern in these

global plots. Figure 12 depicts the 500 hPa relative vorticity at day 4 for the uniform and

variable-resolution mesh forecasts over a portion of the northern hemisphere that includes

the fine mesh and mesh transition regions. The finer structure over North America is evident

in the variable-mesh forecast, for example in the increased wave activity over the western US

and the stronger wrapping of vorticity south of Alaska. There is a smooth transition of the

relative vorticity field in the variable-mesh transition regions (south and west of Alaska and

southeast of Greenland; see Fig. 10). As expected, the coarse mesh region of the variable-

mesh solution are less well resolved compared to the uniform mesh solution, as is evident in

the vorticity filaments over Europe and Northern Africa.

These preliminary results suggest that the uniform mesh configurations appear viable for

traditional global NWP purposes and that the variable resolution meshes may be suitable

for high-resolution NWP and regional climate. We also note here that the MPAS model can

be run as a regional model with time dependent lateral boundary conditions provided from

previous MPAS simulations (i.e. 1-way nesting) or from other sources.
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5. Summary

We have described the formulation of a fully compressible nonhydrostatic model whose

discretization uses a horizontal (spherical) centroidal Voronoi mesh with a terrain-following

geometric-height vertical coordinate and C-grid staggering for momentum. The Voronoi

meshes are unstructured and permit variable horizontal resolution, and our nonhydrostatic

model solves the equations of motion directly on these unstructured meshes. We employ a

vector-invariant form of the horizontal momentum equation to avoid discretization difficulties

on the unstructured mesh associated with the nonlinear momentum transport and to allow

for potential vorticity conservation in the horizontal discretization (Ringler et al. 2010). The

temporal discretization uses the explicit time-split Runge Kutta technique from Wicker and

Skamarock (2002) and Klemp et al. (2007). The potential benefits of this formulation for

the compressible flow solver are made possible by three advances. First, we are making use

of the C-grid discretization techniques for Voronoi (nominally hexagonal) meshes described

by Thuburn et al. (2009) and Ringler et al. (2010) that solve the problems associated with

the non-stationary geostrophic mode analyzed by Ničković et al. (2002). Second, we are

using higher-order transport operators as described in Skamarock and Gassmann (2011);

the higher-order transport scheme allows the MPAS model to produce solutions of similar

accuracy to present day state-of-the-art cloud and mesoscale models, and also improves the

large-scale response in early test simulations of baroclinic waves. Finally, MPAS employs an

unstructured mesh that permits continuous grid refinement and demonstrates computational

efficiency similar to our rectangular mesh formulations on existing cache-based supercom-

puter architectures.

We have presented idealized test results from the MPAS nonhydrostatic solver for large-

scale (hydrostatic) flows, e.g. the Jablonowski and Williamson (2006) baroclinic wave on

the sphere, and for nonhydrostatic-scale flows, e.g. mountain waves, density currents and

supercell thunderstorms. MPAS has produced results comparable to other state-of-the-

25



art models in these tests. We have also presented preliminary results using a full-physics

NWP configuration for MPAS that demonstrates its potential for NWP and regional climate

applications on both quasi-uniform and variable-resolution meshes. The horizontal meshes

are designed such that there is a smooth transition in mesh density between the coarse

and fine resolution regions of the mesh. We have not observed any significant deleterious

effects associated with the mesh transition in the solutions we have presented here or in

other solutions we have computed with MPAS. As expected, the fine-mesh regions show

finer-scale structure compared to the structure in the coarse mesh region. Further research

is needed to explore mesh refinement limitations and optimal mesh transition characteristics

(e.g. transition zone width and mesh-resolution rate-of-change) for these Voronoi meshes

and our nonhydrostatic solver. We also will be exploring the use of different timesteps in

regions of different mesh resolutions.

In our example variable-resolution forecast, the same model physics and sub-grid-scale

parameterizations were used over the entire mesh. The model physics and sub-grid-scale

parameterizations will need to be scale-aware in applications with widely varying mesh den-

sities, particularly when mesh densities transition between resolving hydrostatic scale and

nonhydrostatic scale motions.
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Schär, C., D. Leuenberger, O. Fuhrer, D. Lüthi, and C. Girard, 2002: A new terrain-following

vertical coordinate formulation for atmospheric prediction models. Mon. Wea. Rev., 130,

2459–2480.

Skamarock, W. C. and A. Gassmann, 2011: Conservative transport schemes for spherical

geodesic grids: High-order flux operators for ODE-based time integration. Mon. Wea.

Rev., 91, in press.

Skamarock, W. C. and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model

for weather research and forecasting applications. J. Comp. Phys., 227, 3465–3485.

Skamarock, W. C., et al., 2008: A Description of the Advanced Research WRF

Version 3. NCAR Technical Note NCAR/TN-475+STR, 113 pp., available at

http://www.mmm.ucar.edu/wrf/users/docs/arw v3.pdf.

Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon.

Wea. Rev., 91, 99–164.

Straka, J. M., R. B. Wilhelmson, L. J. Wicker, J. R. Anderson, and K. K. Droegemeier,

1993: Numerical-solutions of a nonlinear density-current - a benchmark solution and com-

parisons. Int. J. Numer. Meth. Fl., 17, 1–22.

Thuburn, J., 2008: Numerical wave propagation on the hexagonal C-grid. J. Comp. Phys.,

227, 5836–5858.

Thuburn, J., T. Ringler, W. C. Skamarock, and J. B. Klemp, 2009: A unified approach to

energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids. J.

Comp. Phys., 228, 8321–8335.

29



Tomita, H., 2008: A stretched icosahedral grid by a new grid transformation. J. Meteor.

Soc. Japan., 86, 107–119.

Walko, R. L. and R. Avissar, 2008: The ocean-land-atmosphere model (olam). part i:

Shallow-water tests. Mon. Wea. Rev., 136, 4033–4044.

Weisman, M. L. and J. B. Klemp, 1982: The dependence of numerically simulated convective

storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504–520.

Wicker, L. J. and W. C. Skamarock, 2002: Time-splitting methods for elastic models using

forward time schemes. Mon. Wea. Rev., 130, 2088–2097.

Williamson, D. L., 2007: The evolution of dynamical cores for global atmospheric models.

J. Meteor. Soc. Jpn., 85B, 241–269.

Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System

(ARPS) - A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part

I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161–193.

Yeh, K.-S., J. Cote, S. Gravel, A. Methot, A. Patoine, M. Roch, and A. Staniforth, 2002:

The CMC-MRB global environmental multiscale (GEM) model. Part III: Nonhydrostatic

formulation. Mon. Wea. Rev., 130, 339–356.

30



List of Figures

1 Depiction of the horizontal C-grid staggered Voronoi mesh. 33

2 Vertical velocity from the Schär et al. (2002) mountain wave test case for (a) a

fully second order formulation, (b) fourth order transport for θ and a second

order diagnosis of Ω, and (c) fourth order transport for θ and a consistent

fourth order diagnosis of Ω. 34

3 Potential temperature at 900 seconds from the Straka et al (1993) density

current test case. The field is plotted as in Straka et al, extending from 0 to

19.2 km in x and 0 to 4.8 km in z with a contour interval of 1 K. 35

4 Horizontal cross sections at 2 hours from supercell simulations using MPAS

(perfect hexagonal mesh) and a rectangular mesh model. Rainwater mixing

ratio and vertical velocity (c.i. = 5 m/s) are contoured for a horizontal plane

at height z = 5 km. The lowest-model-level (z = 0.25 km) perturbation

potential temperature is contoured using blue lines with an interval of 2 K

centered around 0 K, and the region of θ
′

< −3 K is shaded. 36

5 Maximum vertical velocity for the supercell simulations using MPAS (perfect

hexagonal mesh) and a rectangular mesh model. 37

6 Initial state for the Jablonowski and Williamson baroclinic wave test simu-

lation. The thick contours are for the zonal velocity (c.i. = 5 m/s) and the

thin contours are for potential temperature (c.i. = 5 K). The maximum zonal

velocity is 34.99 m/s. 38

31



7 Solution at day 9 for the Jablonowski and Williamson (2006) baroclinic wave

test. The quasi-uniform mesh has approximately 60 km cell-center spacing. 39

8 Surface pressure for the unperturbed jet at day 9. α is the latitudinal rotation

of the geographic pole to the computational pole of the mesh which is centered

on one of the twelve pentagons of the icosahedral-based grid. 40

9 Vertical vorticity for the Jablonowski and Williamson jet at day 8 on model

level 5 (approximately 850 hPa) from simulations using (14) with α = 1 (top)

and with α = 3/8 (bottom) to evaluate the cell-center kinetic energy. 41

10 The X8 variable resolution Voronoi mesh with 10242 grid cells from Ringler

et al. (2011) with the high-resolution region centered over North America.

The cell center distances vary by approximately a factor of 8 and are 650 km

and 85 km in the coarse and fine mesh regions, respectively. 42

11 5-day global forecasts and CFSR analysis valid on 0Z 28 October 2010. 43

12 4-day global forecasts of relative vorticity at 500 hPa valid on 0Z 27 October

2010. 44

32



A

B

u11
u 1

u12

u10

u13
u14

u 9

u 2

u 3

u 5

u 4

u 6

u 7

u 8

C

l
e

d
e

A
Cv

Fig. 1. Depiction of the horizontal C-grid staggered Voronoi mesh.

33



Fig. 2. Vertical velocity from the Schär et al. (2002) mountain wave test case for (a) a fully
second order formulation, (b) fourth order transport for θ and a second order diagnosis of
Ω, and (c) fourth order transport for θ and a consistent fourth order diagnosis of Ω.
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Fig. 3. Potential temperature at 900 seconds from the Straka et al (1993) density current
test case. The field is plotted as in Straka et al, extending from 0 to 19.2 km in x and 0 to
4.8 km in z with a contour interval of 1 K.
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Fig. 4. Horizontal cross sections at 2 hours from supercell simulations using MPAS (perfect
hexagonal mesh) and a rectangular mesh model. Rainwater mixing ratio and vertical velocity
(c.i. = 5 m/s) are contoured for a horizontal plane at height z = 5 km. The lowest-model-
level (z = 0.25 km) perturbation potential temperature is contoured using blue lines with
an interval of 2 K centered around 0 K, and the region of θ

′

< −3 K is shaded.
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Fig. 5. Maximum vertical velocity for the supercell simulations using MPAS (perfect hexag-
onal mesh) and a rectangular mesh model.
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Fig. 6. Initial state for the Jablonowski and Williamson baroclinic wave test simulation.
The thick contours are for the zonal velocity (c.i. = 5 m/s) and the thin contours are for
potential temperature (c.i. = 5 K). The maximum zonal velocity is 34.99 m/s.
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Fig. 7. Solution at day 9 for the Jablonowski and Williamson (2006) baroclinic wave test.
The quasi-uniform mesh has approximately 60 km cell-center spacing.
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Fig. 8. Surface pressure for the unperturbed jet at day 9. α is the latitudinal rotation of
the geographic pole to the computational pole of the mesh which is centered on one of the
twelve pentagons of the icosahedral-based grid.
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Fig. 9. Vertical vorticity for the Jablonowski and Williamson jet at day 8 on model level
5 (approximately 850 hPa) from simulations using (14) with α = 1 (top) and with α = 3/8
(bottom) to evaluate the cell-center kinetic energy.
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Fig. 10. The X8 variable resolution Voronoi mesh with 10242 grid cells from Ringler et al.
(2011) with the high-resolution region centered over North America. The cell center distances
vary by approximately a factor of 8 and are 650 km and 85 km in the coarse and fine mesh
regions, respectively.
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Fig. 11. 5-day global forecasts and CFSR analysis valid on 0Z 28 October 2010.
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Fig. 12. 4-day global forecasts of relative vorticity at 500 hPa valid on 0Z 27 October 2010.
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